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ABSTRACT
Click modeling aims to interpret the users’ search click data
in order to predict their clicking behavior. Existing mod-
els can well characterize the position bias of documents and
snippets in relation to users’ mainstream click behavior. Yet,
current advances depict users’ search actions only in a gen-
eral setting by implicitly assuming that all users act in the
same way, regardless of the fact that anyone, motivated with
some individual interest, is more likely to click on a link
than others. It is in light of this that we put forward a novel
personalized click model to describe the user-oriented click
preferences, which applies and extends matrix / tensor fac-
torization from the view of collaborative filtering to connect
users, queries and documents together. Our model serves
as a generalized personalization framework that can be in-
corporated to the previously proposed click models and, in
many cases, to their future extensions. Despite the sparsity
of search click data, our personalized model demonstrates its
advantage over the best click models previously discussed
in the Web-search literature, supported by our large-scale
experiments on a real dataset. A delightful bonus is the
model’s ability to gain insights into queries and documents
through latent feature vectors, and hence to handle rare and
even new query-document pairs much better than previous
click models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval
Models
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1. INTRODUCTION
Click-through logs in search engines are a valuable re-

source for learning user preferences for search or advertise-
ment (ads) results. The analysis of these log data can facil-
itate a number of search-related applications, such as Web
search ranking, ads click-through rate (CTR) prediction and
optimization, and user satisfaction estimation. The relevant
research can not only enhance user search experience, but
also make an impact on search revenue as well.

Click prediction aims at computing the probability that
a given document in a search-result list is clicked on after
a user enters some query. To accurately predict user clicks,
a central question is to resolve the user-perceived relevance
between query-document pairs. Having learnt this relevance
from massive search click data, a commercial search engine
can improve its understanding of search users and therefore
polish its search results. Recently, the problem of learning
user-perceived document relevance from click-through data
has been formalized as a problem of click model learning,
and has become an attractive research topic. Many studies
have been attempted to mine the general user preferences
from click-through logs to improve the overall relevance of
search results [14, 13, 2].

Since click data are informative and can be easily col-
lected, they offer a promising approach to optimize search
engine performance with low cost. However, a well-known
challenge of using such data is the position bias, whereby a
document at a higher position on a Web page tends to at-
tract more user clicks even when in the case of low document
relevance. This bias was firstly mentioned by [9] in their eye-
tracking experiment, which pointed out that the frequently
used CTR may not be appropriate as an estimator of docu-
ment relevance. Prior work [19] in sponsored advertisement
search attempted to exploit the position bias by imposing
a multiplicative factor on documents at lower positions to
infer their true relevance scores. This idea was further ex-
plored in organic searches [5], and was formalized as the



so-called Examination Hypothesis, a fundamental assump-
tion for many following important models. For example,
these models include the User Browsing Model (UBM) [8],
Dynamic Bayesian Network (DBN) model [3], Click Chain
Model (CCM) [10], Bayesian Browsing Model (BBM) [17],
General Click Model (GCM) [24] and the Session Utility
Model (SUM) [7].

In spite of their merits, these previous developments in
click modeling are limited by their assumption that the query-
document relevance model is identical for all search engine
users. However, we observe that there are a large number of
similar queries submitted by different users that resulted in
very different information needs and search preferences [12].
In response, in this paper, we argue that a single global
query-document relevance is not sufficient to truly reflect
the interest of every individual user. Therefore, we must
develop a new method for building personalized relevance
models to fully capture diversified user interests.

To further illustrate our motivation, take a query “opera”
as an example. This query may come from an engineer,
who expects results that present the web browser Opera at
opera.com. In contrast, a music lover who submits the same
query may look for some vocal concert performance. In this
situation, search results like sfopera.com and other opera
houses are more likely to be clicked. This example indi-
cates that the attractiveness of a search result is not only
influenced by its relevance but also determined by the user’s
intrinsic search need for the query. Furthermore, notice that
the engineer might have searched for technological software
for a couple of times previously, and that the music lover
could be a regular visitor to music Web sites. In this pa-
per, we show that those activities that are embedded in the
search history logs can be exploited to imply users’ personal
search preferences. Thus, we can analyze this history data to
provide personalized search results to meet user’s interests.

An intuitive approach to solve the personalization prob-
lem is to utilize the user’s historical search data to learn
personalized document relevance models. However, a major
challenge is that user click data for a query-document pair
are often grossly insufficient and sparse. Existing click mod-
els consider query-document as an integrated pair, but do
not have the ability to handle such sparse data. This limi-
tation leads us to a different approach, in which we capture
user preferences from click logs collaboratively. In partic-
ular, we propose a collaborative-filtering based click-model
framework. In this framework, we factorize the user-query-
document relations as latent vectors, which reflect the diver-
sity of user’s intrinsic preferences and the inter- and intra-
relationships of queries and documents. In the process, we
take the personalized click model under a general framework
user modeling, for which we pay attention to personalize
document relevance and leave position biases intact. Note
that the two parts of Examination Hypothesis remain rela-
tively independent, so that not only different depictions of
position bias from previous click models can be replaced in
the model, but various collaborative filtering models may
substitute one another as well.

The contribution of this paper is two-fold.

• We address the issue of personalization for click mod-
els by introducing collaborative filtering to the liter-
ature of web search. Our model is able to handle
low frequency and even new query-document combi-
nations that preceding click models cannot manage,

for we introduce matrix factorization, and its exten-
sion tensor factorization, as a mature and highly scal-
able model. Queries and documents are then implicitly
connected through their latent feature vectors and fur-
ther through users. As a result, new query-document
pairs that are not present in training data may still be
inferred, and informational queries with complex click
logs can be predicted more precisely. We believe that
this is the first time for this to be done.

• We conduct extensive experiments on large-scale real-
world click log data to evaluate our model and algo-
rithm. Our results show that the personalization of
click model is a highly promising direction for click-
modeling research.

In the rest of this paper, we first introduce some of the
existing click models and related theories in Section 2. We
then explain our factorization models, as well as the infer-
ence method in details in Section 3. We perform experiments
on the personalized click models based on real dataset and
present our results and insights in Section 4 and Section 5,
respectively. We share our thoughts of possible future work
and conclude the paper in Section 6.

2. BACKGROUND
In this section, we first introduce the basic Position Model

and then explore its extensions to various existing click mod-
els.

Before delving into the detailed introduction of click mod-
els, we describe some relevant concepts when a user submits
a search query and the notations used throughout the paper.
A user u first makes an inquiry by sending query q. After
fetching Search Engine Result Page (SERP), one scrutinizes
the provided documents, or referred as urls in some work
[5], in a particular order and decides to either click or skip
a document d. The widely accepted assumption is that the
decision is made according to the user-perceived relevance
between document and query. In general, the prediction of
user click behavior is modeled in a probabilistic setting. It
should be noted that SERP returns not only the organic
search results mentioned above, but also other links like ads
and related queries that a user might perform a click [4]. To
simplify the problem, such links are out of the scope of this
paper.

We introduce notations used in the paper. Each obser-
vation of click contains a vector {C, u, q, d, i}, where C = 1
means a click and i is the document position. The data set
S in query logs are partitioned into S•, the subset that con-
tains all the clicked items where C = 1, and its complement
S◦, the subset of observations that are not clicked. Within
our paper, we follow the notations in [8] where a dot denotes
a click and a hallow circle a skip. The index of S denotes
the requirement that the observations need to meet to be
in the set. For example, S•

qd,i refers to all the observations
such that document d at position i for the given query q is
clicked. Similarly, S◦

i represents all the observations such
that a document at position i is neglected. Additionally, we
designate S• and S◦ the cardinalities of the corresponding
sets.

2.1 Position Model
The Position Model [19] is a broadly accepted basic click

model. It incorporates position bias by assuming that a user



makes the click decision only after examining the document’s
title and snippet. Whether the user examines a document
item or not depends on the position of the document. This
is referred as the Examination Hypothesis.

If we let C = 1 denote the event of click and value 0
the absence of the event, then the probability to click a
document d at position i given query q can be expressed as
P (Ci = 1|q, d).

Now let E = 1 denote the event of examination and value
0 disregard for the document, and the probability of click
under Examination Hypothesis can be formulated as

P (Ci = 1|q, d) =
∑
Ei

P (Ci = 1|Ei, q, d)P (Ei)

=P (Ci = 1|Ei = 1, q, d︸ ︷︷ ︸
document relevance

) P (Ei = 1)︸ ︷︷ ︸
position bias

Define

αqd = P (Ci = 1|Ei = 1, q, d) and βi = P (Ei = 1) ,

then

P (Ci = 1|q, d) = αqdβi

P (Ci = 0|q, d) =
∑
E

P (C = 0|E, q, d)P (Ei)

=1− αqdβi

From the above, the click event follows a simple Bernoulli
distribution. When the parameter set β are set as ones,
the model degrades to a baseline model that a click depends
solely on the user-perceived relevance of the document to a
given query. The joint likelihood under our notations is then

L(α,β|S) =
∏
q,d,i

(αqdβi)
S•
qd,i(1− αqdβi)

S◦
qd,i

In this model, the hidden variable is the event of exami-
nation E. One can apply Expectation Maximization (EM)
algorithm to estimate α and β in an alternation fashion [6].
This method can also avoid the possible situations when
α > 1.

2.2 Cascade Model
The pure Position Model copes only with different posi-

tions that are independent of each other. Many extensions
were subsequently proposed to take the whole-session inter-
actions into consideration. One session here is defined as
all the search results returned for one requested query. The
number of relevant documents within a session is normally
set as 10. More hypotheses were raised to interpret hidden
information in a session.

A prominent hypothesis is that users tend to examine doc-
uments one by one from top of the page. A document can
be examined only if its upper neighbor is examined. An
additional condition that a user stops the session when a
document is clicked gives Cascade Model [15]. Under these
requirements, a click on the document indicates that: (1)
the user has examined all the documents above and regarded
them as irrelevant; (2) all the documents below will not be
examined and the session is terminated. Again, it is quite
clear that whether a user submits a click depends on the
user-perceived document relevance just as in Position Model.

Following prior notations, Cascade Model can be formal-
ized.

P (Ei = 1) = 1

P (Ei+1 = 1|Ei = 0) = 0

P (Ci = 1|Ei = 1) = αqdi

P (Ei+1 = 1|Ei = 1, Ci) = 1−Ci

Then the probability of click can be computed as

P (Ci = 1) = αqdi

i−1∏
j=1

(1− αqdj )

While the Position Model focuses on depicting position
bias as precisely as possible, the Cascade Hypothesis was
proposed to view user search behavior as an action chain.
One drawback of the Cascade Model is that the assumption
is so strict that sessions with more than one click are to
be discarded. This restriction gives rise to some subsequent
extensions, which we review below.

2.3 User Browsing Model
The hypothesis raised by the User Browsing Model (UBM)

[8] aims at arriving at a better estimation of position bias by
relaxing it from the limitation of constant multipliers. It also
overcomes the constraint of Cascade Model that only one-
click sessions can be handled. The model says that position
bias depends not only on current position i, but also on the
distance to the position of the latest clicked document r. βi

is hence extended to βir.
We set r = 0 if there is no preceding clicks. If we let

αqdi denote the user-perceived relevance of document d at
position i for a given query q, then UBM can be formally
illustrated as follows.

P (Ci = 1|Ei = 1) = αqdi

P (Ci = 1|Ei = 0) = 0

P (Ei = 1|Ci−r = 1, Ci−r+1 = · · · = Ci−1 = 0) = βir

P (Ei = 1|C1 = · · · = Ci−1 = 0) = βi0

The joint likelihood bears a form similar to Position Model.

L(α,β|S) =
∏
i,r

∏
q,d

(αqdβir)
S•
qd,ir (1− αqdβir)

S◦
qd,ir

Similarly, we can also use Expectation Maximization (EM)
algorithm to complete model inference [8].

3. PERSONALIZED CLICK MODEL
In this section, we present our main approach for personal-

ized click models. We first analyze the drawbacks of current
click models and then introduce collaborative filtering to
the click-through-rate prediction problem. We then consider
three different matrix or tensor factorization set-ups. The
first one is a matrix factorization model on queries and doc-
uments only to compare with preceding click models to show
the capability of our decomposition method. The model has
self-explanatory probability meanings. The second one is a
direct incorporation of probabilistic tensor factorization on
users, queries and documents to illustrate the framework of
personalized click model. The last one is a hybrid factor-
ization model that emphasizes on queries and documents
interaction and characterizes user preference through user’s
deviation from average. We give reasons for why the hybrid



model is superior to the other two, and the inference is given
after the models.

3.1 Limitation of Previous Works
When looking back at the preceding click models, we no-

tice two main drawbacks. It was these two limitations that
inspires our new models. Firstly, while existing models put
quite some efforts to depict position bias, the complexity
of document relevance has been largely neglected. Individ-
ual characteristics of queries and documents were not thor-
oughly considered. A query and a document has been simply
treated as an integrated pair. Hence, a new query-document
combination in testing data cannot be effectively handled.

Another problem is that previous click models regard doc-
ument relevance as a global parameter and overlook any pos-
sible disparity due to user personal behavior. However, user
u may have personal interest in or preference to a particular
url entry d of query q, and consequently, CTR of this query-
document pair by u can be relatively higher than average.

To relax the limitation of query-document pair perspective
and to incorporate personalization to click models, our novel
approach adopts some ideas from recommender systems [20,
16, 18].

The general setting of a recommender system consists of
two main components, users and items. A user u may have
rated an item i, with score rui. The score associated with
that user-item pair can be a numerical value, or a 0/1 in-
dicator. Yet, there are also many unrated user-item pairs.
The goal of a recommender system is to use existing rated
values {rui} to predict scores for requisite user-item pairs
with missing values.

Collaborative filtering is an important technique that ex-
plores user similarity to compute new ratings for products
in recommender systems. Among many of the models of
collaborative filtering, we use matrix factorization, and its
tensor extension, in our work for two reasons: (1) matrix
factorization characterizes latent factors of both items and
users implied from feedback log; (2) matrix factorization is
scalable and flexible with high accuracy. By using matrix
factorization, we can not only handle new query-document
pairs from latent factors and implicit connections, but effec-
tively and efficiently solve the problem of personalization as
well.

3.2 Matrix Factorization Click Model
As introduced in Section 3.1, one limitation of previous

work neglects interactions between queries and documents,
which are simply modeled as pairs. We now propose a ma-
trix factorization click model (MFCM) to focus on queries
and documents interactions through their latent feature vec-
tors. Suppose that a query q is submitted in a session and
N documents are fetched, the i-th document being di. If
there are in total Mq queries and Md documents, then we let
Q ⊂ R

F×Mq , where the set consists of all possible real-valued
matrices with size F ×Mq , and D ⊂ R

F×Md represents the
latent factors of queries and documents, respectively. In this
equation, F is the number of factors. Let N (μ, σ2) be the
probability density function of Gaussian distribution with
mean μ and variance σ2.

We adopt a probabilistic linear model with Gaussian ob-
servation noise, and place zero-mean spherical Gaussian pri-
ors on queries and documents latent factors. MFCM is con-

structed as

P (Ci = 1) = P (Ci = 1|Ei = 1)P (Ei = 1)

P (Ci = 1|Ei = 1) = αqdi

P (αqdi |Qq, Dd, σ) ∼ N ((Qq ◦Ddi), σ
2)

P (Qq|σQ) ∼ N (0, σ2
QI)

P (Dd|σD) ∼ N (0, σ2
DI)

Although MFCM collaboratively solves the first limitation
of previous works, it does not introduce personalization to
click models. Hence, a tensor factorization click model with
users as another dimension is presented next.

3.3 Tensor Factorization Click Model
To include personalization in our click models, we intro-

duce a Personalized Click Model (PCM) in this section to
extend MFCM to the user domain. Suppose that there are
Mu users. Let U ⊂ R

F×Mu denote the latent factors of user
domain. The event of user being personally interested in
the i-th document is indicated by Ni. Let αuqdi denote the
probability of event Ni.

Previous Click 
Models for 

position bias

i = 1, 2, ..., N

Ci

Ei Ni

αuqd

Uu Qq Dd

β

Figure 1: Graphic representation of Personalized
Click Model

We impose again zero-mean spherical Gaussian priors on
user latent factors, and extend matrix factorization to tensor
decomposition, which naturally produces personalized click
predictions. Our PCM can be characterized by the following
group of equations.

Ci = 1 ⇔ Ei = 1, Ni = 1 (1)

P (Ni = 1) = αuqdi (2)

P (αuqdi |Uu, Qq, Dd, σ) ∼ N ((Uu ◦Qq ◦Ddi), σ
2) (3)

P (Uu|σU ) ∼ N (0, σ2
UI) (4)

P (Qq|σQ) ∼ N (0, σ2
QI) (5)

P (Dd|σD) ∼ N (0, σ2
DI) (6)

Note that Uu ◦Qq ◦Ddi =
∑F

f=1 UfuQfqDfdi as a tradi-
tional canonical tensor factorization.

Figure 1 gives a graphic representation of PCM, showing
the connections of parameters. Gaussian priors are omitted
from the graph model. As Examination Hypothesis sug-
gested, the event of click at position i is dependent on the
event of user examination and an individual document in-
terest from user u. The examination of a document can still



follow various assumptions of previous click models, while
the personal document interest is modeled as a probability
based on the latent factors of users, queries and documents
themselves.

PCM is promising intuitively by considering the implicit
interactions among users, queries and documents. However,
for a number of navigational queries, personal differentiation
is relatively insignificant. A fully personalized click model
may occasionally suffer from over-fit problem.

3.4 Hybrid Personalized Model
In light of the capabilities and limitations of both MFCM

and PCM, in this section, we put forward a hybrid per-
sonalized click model (HPCM). Instead of performing a di-
rect canonical tensor factorization, we place our emphasis on
the interactions between queries and documents, which have
been believed to be the dominant part for relevance determi-
nation. Then to solve the problem of personalization, only
the residuals are factorized using user latent factors to de-
scribe personal deviations from the global query-document
factor model. That is, HPCM is a combination of PCM
and MFCM. The conditional distribution of αuqdi can be
modeled as

P (αuqdi |Q̃q, D̃d, Uu, Qq, Dd, σ)

∼N ( Q̃q ◦ D̃di︸ ︷︷ ︸
query−doc bias

+Uu ◦Qq ◦Ddi︸ ︷︷ ︸
user diversity

, σ2)

Gaussian priors are

P (Q̃q|σQ̃) ∼ N (0, σ2
Q̃I)

P (D̃d|σD̃) ∼ N (0, σ2
D̃I)

P (Uu|σU ) ∼ N (0, σ2
U I)

P (Qq|σQ) ∼ N (0, σ2
QI)

P (Dd|σD) ∼ N (0, σ2
DI)

The interactions between queries and documents can be
viewed as a relevance bias, while the user-query-document
relationship may be viewed as user preference variations.
Personalization is implemented after a global inference of
query-document relevance. This combined factor model can
therefore outperform MFCM and PCM, illustrated in Sec-
tion 4. The graphic model of HPCM can be found in Fig-
ure 2.

3.5 Inference
Due to space limitation, we present inference process using

Position Model describing position bias, that is, βi. Infer-
ence for other position bias models are very similar and can
be derived accordingly. Taking PCM as an example, the
parameters to be inferred are

Θ = {α,β, U,Q,D}
Define

Ruqd ≡ exp{− (αuqd − Uu ◦Qq ◦Dd)
2

2σ2
− UT

u Uu

2σ2
U

− QT
q Qq

2σ2
Q

− DT
d Dd

2σ2
D

}

The conditional joint probability of observed data is then

P (S|Θ) ∝
∏

u,q,d,i

(αuqdβi)
Ci(1− αuqdβi)

1−CiRuqd

i = 1, 2, ..., N
Ci

Ei Ni

αuqd

Uu Qq Dd

β

Q̃q D̃d

Figure 2: Graphic representation of Hybrid Person-
alized Click Model

The log-likelihood can be computed as

logL(Θ|S, σ2, σ2
U , σ

2
Q, σ

2
D)

=
∑

u,q,d,i

S•
uqd,i(αuqdβi) +

∑
u,q,d,i

S◦
uqd,i(1− αuqdβi)

− 1

2σ2

∑
u,q,d

Suqd(αuqd − Uu ◦Qq ◦Dd)
2

− 1

2σ2
U

∑
u

SuU
T
u Uu − 1

2σ2
Q

∑
q

SqQ
T
q Qq

− 1

2σ2
D

∑
d

SdD
T
d Dd + constant

EM algorithm is utilized, with the event of examination as
hidden variable, to estimate the parameters maximizing the
above log likelihood. A more detailed inference procedure
can be found in Appendix.

Three observations can be made from the inference pro-
cess.

• Position bias β has a rather independent inference pro-
cess, which implies that previous click models portray-
ing this bias can be substituted into the framework.

• The inference of latent vectors can also be implemented
independently to some extent, allowing various factor
models to be included. In our case, PCM, MFCM, and
HPCM.

• Since the updating formulas for latent factors of users,
queries and documents are dependent on one another,
we could apply Stochastic Gradient Descent (SGD) al-
gorithm to learn hidden factors during each EM iter-
ation after αuqd is updated, instead of direct Least
Squared estimation.

So far, we have illustrated our model as a general person-
alization framework for click models with probabilistic im-
plications and explained its ability to connect the domains
of users, queries and documents through latent factors.

4. EXPERIMENTS
To illustrate our experiments in this section, we begin with

our data preparation and experiment set-up. We then dis-
cuss our evaluation metric. Finally, we compare our models



to a baseline model, where we study the impact of varying
variables such as the number of factors and the number of
iterations.

4.1 Experiment Setting
We sampled the search sessions used to train and evaluate

click models from a commercial search engine in the U.S.
market in English language in the first half of May 2011. A
session consists of a input query, a list of returned documents
on the search result page, a list of clicked positions, and
a cookie ID to implicitly represent a user. We collected
sessions subject to the following constraints: (1) the search
session is on the first result page returned by the search
engine; (2) all clicks in the session are on the search results,
neither on sponsored ads nor on other web elements. We sort
search sessions according to time stamps when the query is
sent to the search engine and split them into training and
the testing sets by a ratio of 1:1. In total, we collected
approximately 66 million sessions over 2, 264, 889 distinct
queries submitted by 2, 975, 306 different users. The total
number of documents returned is 24, 864, 764. We filtered
high-frequency queries and spam users that may dominate
the training process. The average number of users per query
is 4.253, and the average number of queries submitted by
one user is 2.228. The detailed distribution of our data is
presented in Table 1.

The column of “Percentage of New Query-User-Doc Tu-
ple”denotes the percentage of the query-user-doc tuples that
occur in testing dataset but are absent in training dataset.
So does the last column for new query-doc pairs. As Ta-
ble 1 shows, the percentage of these new pairs or tuples is
rather high in real log data (28.90% for pairs and 67.75% for
tuples). However, the baseline model can not predict well
on these new pairs/tuples that it never meets in training
dataset. We expect that our proposed model can boost up
the performance on these pairs/tuples with help of collabo-
rative filtering technology.

The baseline click model used in this paper for comparison
is UBM (Section 2.3). We adopted EM inference process for
parameters α and β [8]. To avoid in-finite values in log-
likelihood, a lower bound of 0.01 and a upper bound of 0.99
are applied to document relevance estimators for UBM. The
number of iterations for EM algorithm is set as 100. To
compare with UBM, we setup our factorization framework
by using UBM to depict the part of position bias (Figure 1).

All experiments were carried out with HPC cluster of 144
machines, each with eight 2.4GHz cores and 16GB RAM.

4.2 Evaluation of Performance
To define and quantify the performance of a model, as

well as to compare the soundness of different models, we
introduce log-likelihood and perplexity as evaluation metrics
in this section. These widely adopted metrics ([24, 3, 11, 12,
5, 23]) are used throughout our experiments. We then report
the performance of our models, along with UBM baseline,
under the according evaluation measurement.

4.2.1 Log Likelihood
Log Likelihood (LL) is widely utilized in CTR prediction.

One natural reason is that models often try to maximize
the log likelihood of the joint distribution of click events
in the course of inference. Therefore, LL becomes a direct
measurement of the effectiveness of the estimators. For a

single document, the LL value is the log of the predicted
clicking probability if there is a click on the document. The
value is the log of the predicted non-clicking probability,
otherwise. Take the Position Model as an example. LLΘ(S)
is calculated as

1

S

∑
q,d,i

[S•
qd,i log2(αqdβi) + S◦

qd,i log2(1− αqdβi)]

It is clear that a perfectly-fit set of estimators has a LL
of value 0, and the smaller this value, the worse fit of the
estimators. Also noteworthy is that when two models, or
two sets of estimators, are to be compared, the improve-
ment of LLΘ over LLΘ′ is calculated up to an exponential
transformation, (2LLΘ−LLΘ′ − 1)× 100%.

Model Log-Likelihood Improvement over UBM
UBM −0.4236 -
MFCM −0.3055 8.53%
PCM −0.2577 12.18%
HPCM −0.2448 13.20%

Table 2: Performance of models measured by log-
likelihood.

We present our experiment results on all three proposed
models (MFCM, PCM, and HPCM) and baseline UBM in
Table 2. The average LL is −0.4236 for UBM over all query
sessions. Thanks to latent factor analysis, MFCM has a
LL of −0.3055 and scores a 8.53% improvement. With LL
at −0.2577 and −0.2448, our two personalized click model,
PCM and HPCM, show improvements of 12.18% and 13.20%
respectively. As expected, our HPCM leads to the most
advance over UBM compared with other proposed models
in our paper.
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Figure 3: Log-likelihood on test dataset with respect
to different query frequencies. The factor models
have more significant improvement ratios for tail
queries.

It has long been known that previous click models suffer
from the so-called tail problem, whereby the click-through-
rate prediction is far from satisfactory for infrequent queries.



Query Frequency #Session # Query # User # Document

Percentage of
New

Query-User-Doc
Tuple

Percentage of
New Query-Doc

Pair

100 to 100.5 14,935,135 1,077,691 2,211,723 11,747,545 83.47% 36.49%

100.5 to 101 9,480,325 586,620 2,186,747 7,382,319 59.34% 22.12%

101 to 101.5 9,030,565 283,449 290,581 4,171,647 50.79% 20.33%

101.5 to 102 9,653,622 191,555 299,268 3,674,129 45.25% 23.21%

102 to 102.5 7,573,039 64,186 142,140 1,708,899 46.00% 26.43%

102.5 to 103 7,953,625 45,320 97,588 1,637,040 44.47% 21.31%

103 to 104 4,958,208 13,644 86,969 637,606 40.36% 18.52%

104 to 104.5 1,937,258 2,223 31,403 112,575 37.45% 11.20%

Total 66,547,897 2,264,889 2,975,306 24,864,764 67.75% 28.90%

Table 1: Summary of the dataset sampled from half month of click logs.
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Figure 4: Log-likelihood on test dataset for various
degree of user activeness. Our models have larger
enhancement for infrequent users.

Our factor models solve the tail problem collaboratively. In
Figure 3, we present the model improvement over baseline
versus query frequency. The horizontal axis shows the log-
scale of query frequency in training dataset. The improve-
ment for rare queries boosts up to 80% to 100%. Similar
phenomenon can be observed in Figure 4, where horizon-
tal axis becomes the degree of user activeness characterized
by user frequency. When both query frequency and user
activeness decrease, the enhancement of our factor models
shrinks, for UBM baseline can handle recurring training data
well and leaves extremely limited space for other models to
build up.

4.2.2 Click Perplexity
Perplexity of click events is defined at each position in-

dependently rather than on the whole set. The metric is
related to log-likelihood by putting negative of the latter to
the exponent. In Position Model, for instance, click Perplex-
ity (p) at position i is defined as piΘ(S) =

2
− 1

Si

∑
q,d [S

•
qd,i log2(αqdβi)+S◦

qd,i log2(1−αqdβi)]

Smaller perplexity indicates higher prediction quality, and
the optimal value is 1. When comparing two models, the
improvement of perplexity value piΘ over piΘ′ is given by

piΘ′ − piΘ
piΘ′ − 1

× 100%
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Figure 5: (a) upper. Model performance measured
by perplexity at each position. (b) lower. Model
improvement ratios over UBM at each position.

The experiment results of all three factor models and the
baseline are summarized in Figure 5(a). The average click
perplexity over all query sessions and positions is 1.1659
for MFCM and 1.1488 for PCM, 42.74% and 48.65% im-
provements per position over UBM (1.2898) respectively.
Again, HPCM outperforms the other two factor models sig-
nificantly, scoring an average click perplexity of 1.1293, which



enhances 55.39% of UBM. As shown in Figure 5(a), the im-
provement ratios of all proposed models in this paper does
not suffer greatly when going down the SERP. The improve-
ment of HPCM over UBM even hits to 50% for the lowest
position. The figure also demonstrates that click prediction
quality of HPCM is better than other models at every posi-
tion. MFCM cannot compete with PCM or HPCM because
of its lack of personalization, while PCM can be too over-
fit and sacrifice performance at higher positions where user
diversity is not that dominant. These results are consistent
with our reasoning in Section 3.

4.3 Impact of Model Parameters
The three factor models we proposed in Section 3 have two

model parameters, the number of factors and the number of
iterations for SGD algorithm to well converge. We discuss
the influence of these two parameters on model performance.

4.3.1 Number of Factors
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Figure 6: The influence of the number of factors on
performance under log-likelihood. A few number of
factors are adequate for stable performance.

We study the influence of the number of factors on all of
our three proposed models, MFCM, PCM and HPCM, and
present the experiment results in Figure 6. MFCM needs
more than 10 factors to achieve a relatively stable perfor-
mance, while PCM needs around 8, for PCM has one more
domain of user than MFCM and the number of parameters
to be estimated is greater. This also explains the reason
why HPCM requires fewer number of factors to stabilize
than PCM. Despite of the disparity among the models, the
number of factors needed is rather low in general, implying
that a few latent factors are adequate to catch most features
of users, queries and documents.

4.3.2 Number of Iterations
To infer the factor models, we need to run SGD algorithm

iteratively in one EM iteration. We study whether our infer-
ence procedures converge and how fast they converge on our
datasets. Figure 7 gives the curve showing the relationship
between model performance and the number of iterations
for factor models. All of our factor models converge. It is
presented that more than 9 iterations of factorization are
needed for MFCM to catch up with the performance of our
baseline UBM. The tensor models, PCM and HPCM, be-
come stable after around 20 iterations, while outperforming
UBM from the beginning of iterations.
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Figure 7: The influence of the number of iterations
on performance under log-likelihood. All our models
converge as the number of iterations goes up.

5. DISCUSSION

Query Entropy
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Figure 8: Perplexity on the test data for different
query entropies. Factor models advance more when
query entropy is higher, signaling supremacy on in-
formational queries

We have demonstrated the sound performances of three
factor models, MFCM, PCM and HPCM, in previous sec-
tion, we then look into the enhancement and discuss our
insights during the experiments.

Define query entropy of query q as

H(q) = −
∑
d

CTRq,d log2 CTRq,d

where CTRq,d is the predicted click-through-rate for docu-
ment d under query q.

A high entropy signals a higher degree of complexity, or
more precisely unpredictability. We present model improve-
ment on Log-likelihood as query entropy varies in Figure 8.
The horizontal axis is query entropy in log-scale. Although
it is clear that the improvement is insignificant for low en-
tropy queries, which mainly consist of navigational queries



like amazon.com and user diversity is negligible, the enhance-
ment on performance impressively boosts up for more than
60% as query entropy rises. The reason is that high entropy
queries possess complicated click logs that existing models
cannot effectively deal with, whereas collaborative filtering
can solve complex and diverse clicks efficiently. This matches
our motivations and expectations of our factor models.

6. CONCLUSION
In this paper, we propose three factorization click mod-

els, which include: (1) a matrix factorization click model
(MFCM) that relates queries and documents collaboratively;
(2) a personalized click model (PCM) that uses indiscrimi-
nate tensor factorization to exploit the latent relationships
of users, queries and documents; (3) a hybrid personalized
click model (HPCM) with an emphasis on query-document
interactions while characterizing user variations simultane-
ously.

We carry out a set of extensive experiments with two eval-
uation metrics on a real-world dataset. Our results clearly
show the enhancement over state-of-the-art results. We see
that MFCM performs well for capturing latent feature vec-
tors of queries and documents, while PCM is better for the
capability of personalization. Furthermore, HPCM achieves
the greatest improvement by combining the strengths of pre-
vious two models. In addition, we show that our models are
able to handle tail queries and informational queries, both
of which are limitations in previously existing click models.

Through factor models, we address the personalization is-
sues by characterizing user preferences toward documents.
To simplify the model, however, we assume constant user
preferences that are not varying with time. A future direc-
tion is to extend our models to a temporal click model to
incorporate user preference dynamics to click models.
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APPENDIX
The resemblance of the log-likelihood of PCM and previous
click models can be easily observed, so similar EM algorithm
can be used to infer our new model. We explain the two steps
separately and give the updating equations for a simpler
case, where the number of latent vectors is one for all users,
queries and documents.



E Step
Let us define E as the unobserved events of examination.
EM algorithm first finds the expected value of the log like-
lihood logP (S,E|Θ) with respect to unobserved E given
observed S and current parameters Θ. That is,

Q(Θ,Θt−1) = E[logP (S,E|Θ)|S,Θt−1]

=
∑
E

logP (S, E|Θ)× P (E|S,Θt−1)

=
∑

u,q,d,i

∑
C,E

[logP (C,E|u, q, d, i,Θ)

× P (E|C,u, q, d, i,Θt−1)]

=
∑

u,q,d,i

∑
C,E

[logP (C,E|Θ)P (E|C,Θt−1)]

where Θ is the set of parameters following the tradition. We
drop {u, q, d, i} temporarily for notation convenience.

Note that when the number of factors is one, Uu, Qq and
Dd all become real numbers. By the assumption of the Posi-
tion Model, the probability P (E|S,Θt−1) mentioned above
can be simplified to different cases.

P (E = 1|C = 1,Θt−1) = 1

P (E = 0|C = 1,Θt−1) = 0

P (E = 1|C = 0,Θt−1) =
βt−1
i (1− U t−1

u Qt−1
q Dt−1

d )

1− U t−1
u Qt−1

q Dt−1
d βt−1

i
.
= C̃t−1

uqd,i

P (E = 0|C = 0,Θt−1) = 1− C̃t−1
uqd,i

where C̃t−1
uqd,i can be interpreted as the probability of docu-

ment d being irrelevant of query q judged by certain user
u.

P (C,E|Θ) is even more straight-forward, hence omitted.
Then Q(Θ,Θt−1) can be computed as

Q(Θ,Θi−1) =
∑
S•

{log(αuqdβi)− 1

2σ2
(α− UuQqDdi)

2

− 1

2σ2
U

U2
u − 1

2σ2
Q

Q2
q − 1

2σ2
D

D2
di}

+
∑
S◦

{[log((1− αuqd)βi)

− 1

2σ2
(α− UuQqDdi)

2 − 1

2σ2
U

U2
u

− 1

2σ2
Q

Q2
q − 1

2σ2
D

D2
di ]C̃

t−1
uqd,i

+ log(1− βi)(1− C̃t−1
uqd,i)}

This completes the Expectation step.

M Step
The M step of EM iteration tries to maximize the expecta-
tion computed above, that is, to find

Θt = argmaxΘQ(Θ,Θt−1)

Taking derivatives ofQ(Θ,Θi−1) in respect toΘ produces

the updating formulas for parameters.

βt
i =

S•
i +

∑
uqd(S

◦
uqd,iC̃

t−1
uqd,i)

Si

U t
u =

1
σ2

∑
q,d(αuqdQqDdW

t−1
uqd )

1
σ2

∑
q,d Q

2
qD

2
dW

t−1
uqd + 1

σ2
U

∑
q,d W

t−1
uqd

Qt
q =

1
σ2

∑
u,d(αuqdUuDdW

t−1
uqd )

1
σ2

∑
u,d U

2
uD

2
dW

t−1
uqd + 1

σ2
Q

∑
u,d W

t−1
uqd

Dt
d =

1
σ2

∑
u,q(αuqdUuQqW

t−1
uqd )

1
σ2

∑
u,q U

2
uQ2

qW
t−1
uqd + 1

σ2
D

∑
u,q W

t−1
uqd

where

W t−1
uqd =

∑
S•
uqd

1 +
∑
S◦
uqd

C̃t−1
uqd,i

can be viewed as a fixed weighting term for each element in
tensor. α, however, does not have a close form calculation,
but an equation to be solved numerically. The inference of
EM algorithm completes. Each iteration is sure to increase
log likelihood and the process is bound to converge to a local
maximum of the joint likelihood function.


